sábado, 27 de dezembro de 2008

Novo robô marciano tem lançamento adiado para 2011


A foto ao lado ilustra muito bem o avanço dos robôs marcianos. Ao centro, pode-ser ver o Sojourner, o primeiro deles. À esquerda, uma réplica do Spirit, que explora o planeta vermelho há quase quatro anos juntamente com seu irmão gêmeo Opportunity. À direita, o modelo do MSL, a última e mais avançada geração desses robôs espaciais.


Novo robô marciano


O MSL - Mars Science Laboratory - tinha seu lançamento previsto para 2009, dando seqüência a uma série de missões bem-sucedidas a Marte. Todas as janelas de lançamento deste início de século haviam sido aproveitadas. Não podendo ser lançado em 2009, o MSL terá que esperar por um novo realinhamento entre Marte e a Terra, o que somente acontecerá em 2011.


Problemas nos motores


O adiamento se deu por problemas nos motores. O robô Spirit, apesar de seu enorme sucesso, também está sofrendo de problemas em seus motores.
A diferença é que o MSL é 10 vezes mais pesado do que o Spirit e o Opportunity, tendo as dimensões e a massa de um carro. Isso permitirá que ele leve uma quantidade inédita de equipamentos científicos para continuar a busca por evidências de água em Marte e, eventualmente, das condições para abrigar alguma forma de vida.


Novo sistema de pouso


Para diminuir os riscos de danos no pouso, o novo robô usará um sistema de ajuste de vôo durante sua descida através da atmosfera marciana. Seu sistema de motores é totalmente inovador em relação aos robôs marcianos anteriores, permitindo-lhe viajar mais e estudar uma maior variedade de terrenos.
O local de pouso exato ainda não foi definido. Os estudos atuais indicam quatro possibilidades, que estão sendo analisadas com a ajuda de imagens e dados coletados pela sonda Mars Express.
Brasil vai desenvolver tecnologia para fabricar aviões silenciosos

Reduzir o nível de ruído de aeronaves durante o vôo é o maior desafio do Projeto Aeronave Silenciosa, que em 2009 buscará bolsistas de iniciação científica, mestrado, doutorado e pós-doutorado.
O projeto, que conta com apoio da FAPESP e da Embraer, envolve seis universidades brasileiras sob coordenação acadêmica do professor Julio Romano Meneghini, da Escola Politécnica (Poli) da USP.


Supercomputador contra o barulho


De acordo com Menghini, o projeto, que vai até 2011, terá investimentos de R$ 11 milhões. Parte dos recursos se destinam à aquisição de um supercomputador com mais de 1,2 mil núcleos de CPUs para uso exclusivo do projeto. As primeiras pesquisas já foram iniciadas e em 2009, com a instalação completa da infra-estrutura, o projeto entrará em plena operação.
"O supercomputador está sendo montado e toda a estrutura do projeto já está preparada. Em breve, buscaremos estudantes e pesquisadores que terão oportunidade de trabalhar em uma pesquisa tecnológica com aplicações práticas e na investigação de problemas científicos de ponta", disse à Agência FAPESP.

Ruído dos aviões

O ruído das aeronaves, principalmente nos momentos que antecedem pousos e decolagens, tem grande impacto na qualidade de vida da população que vive próxima às zonas aeroportuárias. Aeroportos em todo o mundo fazem restrições cada vez mais severas aos níveis de ruído produzidos, limitando a competitividade dos fabricantes que não conseguem reduzi-los.
"Um projeto desse tipo é um pólo de atração para estudantes de engenharia mecânica, mecatrônica ou engenharia aeronáutica que, muitas vezes, acabam indo para ramos que não têm relação direta com o que estudaram. Aqui, pelo contrário, vamos trabalhar com uma questão científica muito rica e uma necessidade tecnológica importante", afirmou.


Estabilidade, aerodinâmica e silêncio


A redução do ruído em aeronaves é uma tarefa tecnicamente complexa tanto na parte conceitual como em aspectos práticos, do tipo estabilidade e aerodinâmica. Meneghini explica que o projeto será dividido em quatro plataformas principais: predição numérica de ruído, ensaios aeroacústicos em túnel de vento, procedimento operacional de baixo ruído com simulações usando ferramentas de performance para simulações e criação de métodos de design de baixo ruído.
"Como é muito difícil reduzir o nível de ruído, qualquer avanço já terá valido a pena. Se conseguirmos resultados bons em dois ou três anos, não tenho dúvidas de que isso terá um impacto importante, daqui a cinco ou sete anos, no projeto de novas aeronaves por parte da Embraer, que atendam a demandas de redução de ruído e possam pousar e decolar em mais aeroportos", disse.


Flutuações de pressão


De acordo com Meneghini, o projeto tem envolvimento direto de 13 professores de sete grupos: da EP e da Escola de Engenharia de São Carlos (EESC), da USP, do Instituto Tecnológico de Aeronáutica, da Universidade Federal de Santa Catarina, da Universidade Federal de Uberlândia, da Universidade de Brasília e da Universidade Twente, da Holanda.
A parte experimental, que inclui testes com aviões, ficará principalmente concentrada na Embraer e na EESC. A EP-USP concentrará a maior parte da pesquisa da simulação numérica, que abrange a resolução de equações para calcular a velocidade e a pressão no campo do escoamento ao redor da aeronave. As flutuações de pressão são as principais fontes de geração de ruídos das aeronaves.


Microfones no aeroporto


Meneghini explica que a infra-estrutura ficará a cargo das universidades. Dos R$ 11 milhões destinados ao projeto, uma grande parte foi destinada à compra do supercomputador, que representa uma parte substancial do projeto e será usado por seus integrantes para simulações numéricas.
"Outra parte será investida em ensaios de vôo. Eles serão feitos com a instalação de uma matriz de microfones que funcionará como se fosse um radar acústico. A partir das medições feitas por essa matriz - no total serão quase 500 microfones - poderemos identificar as fontes de geração de ruído de cada um dos elementos da aeronave: isto é, discriminar que ruídos são produzidos pela turbina, pelos slats [superfície aerodinâmica na parte da frente das asas], flaps [na traseira das asas], pelo trem de pouso e assim por diante", explicou.
Os microfones para os ensaios serão instalados na cabeceira de uma pista de testes na cidade de Gavião Peixoto (SP) - com um sistema de análise de sinais - onde os aviões da Embraer irão decolar e pousar várias vezes por dia. "O supercomputador e essa parte de informes corresponderão a uma parte substancial do projeto - pelo menos US$ 1 milhão", afirmou Meneghini.


Túneis de vento


O restante do projeto incluirá ensaios em túneis de vento, que serão realizados na EESC. "Vamos fazer modificações no túnel de vento que eles já têm, para que seja capaz de fazer medições do problema acústico transformando-se em uma câmara anecóica. Ou seja, faremos com que as paredes do túnel não reflitam ondas sonoras que eventualmente forem geradas", disse.
Os locais dos ensaios, segundo o professor, terão estações de trabalho que permitirão aos integrantes do projeto acessar o supercomputador, instalado na Escola Politécnica, na Cidade Universitária, em São Paulo.
"Os recursos para bolsas vão partir da Embraer, como contrapartida. Será um número de bolsas considerável", afirmou Meneghini. As bolsas da Embraer, segundo o professor, serão oferecidas não só a pesquisadores, mas também a professores. "A nova Lei de Inovação possibilitou bolsas de pesquisa para professores envolvidos no projeto. A Embraer vai arcar também com todos os ensaios em vôo - o que é um custo considerável, já que inclui o combustível, a equipe de pilotos e o seguro das aeronaves", disse.
Segundo o professor, um grupo de 20 engenheiros da Embraer deverá trabalhar em tempo integral no projeto. Outros deverão ser integrados no decorrer do projeto.
"Esses recursos também estão considerados na contrapartida. Por outro lado, a parcela da FAPESP é essencial, sem ela não existiria o projeto. O apoio da Fundação possibilitou a compra de equipamentos, microfones, do supercomputador, ou seja, toda a parte de aquisição de dados", destacou

quarta-feira, 24 de dezembro de 2008

Defeito na soldagem de metais é desvendado em laboratório brasileiro

Um problema há muito desafiava pesquisadores que tentavam entender um fenômeno conhecido como fratura por queda de ductilidade (FQD), que ocorre durante a soldagem.
Durante o processo, a junta soldada apresenta uma fratura em estado sólido, que resulta da redução da capacidade do material de suportar a deformação em temperaturas elevadas.
Fundamentos metalúrgicos
Uma pesquisa feita por Edwar Andrés Torres López, na Unicamp e no Laboratório Nacional de Luz Síncrotron (LNLS), acaba de lançar novas luzes sobre o fenômeno da FQD.
De acordo com Ramirez, o fenômeno não acontece só nas ligas de níquel, mas também em diversos materiais, como ligas de alumínio e aços inoxidáveis, por exemplo.
"É um problema generalizado entre todos que trabalham com esses materiais. Mas o que se fez até agora foi atacar o problema. Nós optamos por tentar entender o fundamento do fenômeno, investigando a metalurgia por trás dele para tentar modificar a composição química do material, impedindo que ocorra a FQD", disse Antonio José Ramirez, que também participou da pesquisa, à Agência FAPESP.
Ligas de níquel
A pesquisa avaliou o comportamento das microestruturas de ligas de níquel a temperaturas elevadas por meio de observações detalhadas no microscópio eletrônico de varredura (MEV). O objetivo, segundo Ramirez, era acompanhar, em tempo real, o processo de deformação e fratura desses materiais estruturais quando submetidos a altas temperaturas e, assim, identificar os mecanismos envolvidos.
O tipo de experimento em que uma condição externa é aplicada ao material de interesse e a resposta é acompanhada em tempo real é conhecido como in situ. No ensaio termomecânico, foram utilizadas três ligas de níquel empregadas como metal de aporte para a soldagem em uma faixa de temperatura de 700 a mil graus Celsius.
Ineditismo
De acordo com Ramirez, o ineditismo da pesquisa se deve às altas taxas de temperatura empregadas, uma vez que na literatura apenas há testes com temperaturas de até 600 graus. Além disso, afirmou, os ensaios no microscópio eletrônico de varredura também foram inovadores.
"Mais do que encontrar uma receita para um tipo de material, que nesses casos são as ligas de níquel, queremos entender o fenômeno. Muitas pessoas deram receitas para resolver o problema prático, mas ninguém explicou o fenômeno, mostrando o que acontece dentro do material na escala atômica para que ocorra essa FQD tão severa", diz Ramirez.
A grande vantagem, segundo ele, é que, além de conseguir reproduzir o resultado de outras técnicas, o método usado permitiu visualizar a fratura durante o ensaio. "Antes tínhamos uma informação incompleta do problema porque as trincas já tinham acontecido. Nosso procedimento vai além. Hoje já temos muita informação sobre o processo", afirma.
Aplicações na indústria química e nuclear
Um dos grandes desafios foi desenvolver toda uma metodologia do ensaio e alterações na instrumentação. Mas, além da temperatura, o nível de vácuo e a estabilidade mecânica foram barreiras a serem superadas.
Segundo Ramirez, com o experimento, tornou-se possível quantificar a suscetibilidade à FQD, obter os valores de deformação local nas regiões onde se iniciam as trincas e propor e quantificar, de forma inédita, o processo de escorregamento de contornos de grãos envolvidos no processo de FQD. "Ficou claro qual a liga mais suscetível à fratura por queda de ductilidade e por quê", afirmou.
O estudo tem aplicações na indústria química e nuclear, segundo o pesquisador, mas não se limita a isso. "O procedimento é aplicado para fazer reatores nucleares ou reatores de indústria química que utilizam vasos de pressão com paredes muito grossas dentro dos quais, sob alta temperatura, ocorre uma reação química. O estudo ajuda a resolver um problema real da indústria química e nuclear, além de contribuir para o avanço do conhecimento", explicou.
Descoberto o segredo da tenacidade dos plásticos
A capacidade de dobrar em vez de simplesmente se partir é uma das características que explicam a disseminação dos plásticos em todos os setores da vida moderna. Mas, até agora, os cientistas não sabiam exatamente o segredo dessa flexibilidade.
Rigidez versus flexibilidade
Os plásticos, ou polímeros, são utilizados desde a fabricação de brinquedos até os mais modernos aviões. Apesar de sua leveza e facilidade para serem moldados em qualquer formato, os plásticos resultam em peças rígidas e muito duráveis.
O que desafiava os cientistas era justamente essa rigidez, que se transforma em uma utilíssima capacidade de se dobrar e flexionar quando a peça é submetida a uma tensão mecânica. Essa propriedade é conhecida como "fluxo plástico."
"Esta é uma combinação estranha de propriedades... Esses materiais não deveriam ser capazes de fluir porque eles são sólidos rígidos, mas alguns deles conseguem," explica o químico Mark Ediger, da Universidade Wisconsin-Madison, nos Estados Unidos.
Rearranjos moleculares
Agora, Ediger e seu orientando Hau-Nan Lee descreveram como isso é possível. Em um artigo publicado na revista Science, eles descrevem como as moléculas constituintes dos plásticos passam por um rearranjo molecular que aumenta de velocidade em até 1.000 vezes quando o material é submetido a um estresse físico, forçando o plástico a fluir.
Essa rapidez nos rearranjos moleculares é essencial para permitir que o material se adapte a diferentes condições sem se fraturar imediatamente em resposta à aplicação da tensão mecânica.
Vidros poliméricos
Os plásticos são um tipo de material conhecido pelos químicos como vidros poliméricos. Ao contrário de um cristal, no qual as moléculas ficam perfeitamente travadas em uma estrutura bem definida, um vidro é um material no qual as moléculas se misturam de forma totalmente aleatória.
Ao mesmo tempo em que essa desordem atômica significa que os vidros são quimicamente menos estáveis do que os cristais, ela também dá às moléculas dos materiais vítreos um certo espaço para se mover sem a quebra de suas ligações.
Resistência do acrílico
Os pesquisadores examinaram a capacidade mecânica de um plástico comum chamado polimetilmetacrilato - também conhecido como Plexiglas ou acrílico - e descobriram que um força aplicada sobre ele aumenta esses movimentos moleculares em até 1.000 vezes.
Os pesquisadores registraram rearranjos moleculares que levariam até um dia para acontecer em condições normais, ocorrerem em 50 segundos quando a força é aplicada.
"Da perspectiva mais fundamental, nós estamos tentando entender porque exercer uma pressão sobre um vidro permite que ele flua. A resposta a esta questão irá nos ajudar a modelar melhor o comportamento de materiais reais em aplicações reais," explicou Ediger.

quinta-feira, 4 de dezembro de 2008

Computadores quânticos ficam 5.000% mais viáveis

Uma equipe internacional de físicos conseguiu ampliar o tempo de duração do spin de um elétron em mais de 5.000 por cento. O estado quântico do spin será utilizado para armazenar informações nos computadores quânticos e aumentá-lo nessa magnitude é um passo importante rumo à construção desses computadores ultra-rápidos.

A propriedade quântica do spin faz com que os elétrons funcionem como se fossem minúsculos ímãs, sendo o spin de cada um deles utilizado como um bit para armazenar informações digitais. Nos computadores atuais, os bits são armazenados na forma de cargas elétricas de inúmeros elétrons.

Controlando o spin de um elétron

Os pesquisadores utilizaram microondas para controlar o estado do spin de um elétron mantido sobre um substrato de silício. O estado do spin pode ser acompanhado em tempo real medindo-se a corrente elétrica que flui entre os eletrodos de cor cinza na ilustração.

"O silício tem dominado a indústria de computadores por décadas," diz o Dr. Gavin Morley. "A técnica de maior sensibilidade para se ver o comportamento quântico de elétrons mantidos em chips de silício utiliza correntes elétricas. Infelizmente, o problema é que essas correntes sempre danificam as propriedades quânticas sob análise, restringindo sua utilidade."

Computador quântico mais viável

Morley e seus colegas resolveram este problema utilizando um campo magnético 25 vezes mais forte do que vinha sendo utilizado nas experiências até agora. Esse poderoso campo magnético também gerou uma vantagem adicional na busca por computadores quânticos práticos: ele coloca os spins dos elétrons em um conveniente "estado de inicialização", alinhando-os todos na mesma direção.

"Obter as respostas de cálculos quânticos não é fácil. Este novo trabalho nos coloca mais próximos de resolver o problema mostrando como nós podemos ler o estado dos spins dos elétrons em um computador quântico construído à base de silício," afirmam os pesquisadores.

quarta-feira, 3 de dezembro de 2008

Memórias e discos rígidos aproximam-se do armazenamento em nível molecular

Pesquisadores ingleses descobriram como usar nanotubos de carbono para criar discos rígidos capazes de armazenar dados em nível molecular, levando ao limite a possibilidade de miniaturização das memórias e discos de computadores.
Na tecnologia atual, os bits são gravados nos discos rígidos e em outros dispositivos de armazenamento por meio da alteração da orientação magnética de pequenos aglomerados de partículas magnéticas - as chamadas células de memória.

Ação telescópica

Os cientistas da Universidade de Nottingham descobriram que é possível criar uma célula de memória colocando um nanotubo de carbono dentro de outro ligeiramente mais largo.
Devido à interação das forças eletrostática, de van der Walls e de capilaridade, o nanotubo menor irá "flutuar" no interior do nanotubo maior, podendo ter sua posição alterada pela aplicação de uma tensão elétrica.
Esse mecanismo de ação telescópica poderá conectar ou desconectar o nanotubo interno a um eletrodo localizado em sua base, criando os estados equivalentes aos 0s e 1s necessários para o armazenamento binário de informações.

Memória rápida e não-volátil

Além de ser rápido e consumir uma quantidade de energia muito menor do que a necessária para o funcionamento das memórias atuais, a célula de memória de nanotubos de carbono não perderá os dados quando a energia for desligada, ou seja, ela criará permitirá a criação de memórias não-voláteis. Na falta de energia, a força de van der Walls mantém o nanotubo interior na sua posição, seja em contato, seja à distância do eletrodo.
"A indústria eletrônica está procurando por um substituto para as tecnologias à base de silício para armazenamento de dados e para as memórias de computadores. As tecnologias atuais, como os discos rígidos magnéticos, não podem ser utilizados com confiabilidade em escalas submicrométricas e logo atingirão suas limitações físicas fundamentais," comenta a Dra. Elena Bichoutskaia, coordenadora do estudo.
Agora que demonstraram teoricamente a viabilidade da células de memória de nanotubos de carbono, os pesquisadores vão tentar construir os primeiros protótipos para avaliação prática de seu funcionamento.

segunda-feira, 1 de dezembro de 2008

Nanotecnologia

Microscópio 4-D revoluciona a forma como vemos o mundo nano






Acostumados com o cinema e a televisão, poucos se dão conta da revolução que representou a sua criação, quando, pela primeira vez, as pessoas puderam ver o passado gravado para sempre em um rolo de filme.
Agora, em um feito similar, cientistas do Instituto Tecnológica da Califórnia criaram um microscópio 4-D, capaz de capturar as três dimensões espaciais mais o tempo - uma descrição pomposa para um filme em escala atômica.


Filmando átomos e moléculas


Apesar dos contínuos avanços na microscopia, esta é a primeira vez que se consegue a gravação de um filme em tempo real, no espaço real, das fugazes alterações na estrutura e na forma da matéria em uma escala de bilionésimos de metro.
A nova técnica, batizada de microscopia eletrônica 4-D, foi desenvolvida pela equipe do professor Ahmed Zewail, ganhador do Prêmio Nobel de Química em 1999 pelo uso de pulsos de laser ultra-curtos para a observação de reações químicas fundamentais, como os átomos se unindo em moléculas e depois se dividindo novamente em átomos. Um fenômeno como este ocorre em uma escala de um femtosegundo, o equivalente a um milionésimo de bilionésimo de segundo.


A dimensão do espaço


As imagens das moléculas em movimento "nos dão a dimensão do tempo, mas o que nós não tínhamos era a dimensão do espaço, a estrutura. Meu sonho desde 1999 era descobrir uma forma de olhar não apenas no tempo mas também no domínio espacial, para ver a arquitetura de um sistema complexo em escala atômica, à medida que ele muda ao longo do tempo, seja da matéria física ou biológica," diz Zewail.
Os microscópios eletrônicos são a melhor ferramenta atualmente para se observar a matéria em escala molecular e atômica, mas eles não são capazes de capturar o comportamento dos átomos simultaneamente no espaço e no tempo.


Controlando elétrons individuais


O que a equipe do professor Zewail fez foi controlar com precisão, no tempo e no espaço, a trajetória de cada elétron emitido pelo microscópio eletrônico. Com isto eles criaram um "imageamento de elétron único" ultra-rápido, introduzindo a quarta dimensão - a espacial - na microscopia eletrônica.
A imagem resultante produzida por cada elétron representa uma fotografia de um femtosegundo num dado momento no tempo. Da mesma forma que os quadros em um filme, as imagens geradas seqüencialmente podem ser montadas em um filme digital mostrando o que acontece em escala atômica.
"Com esta técnica de imageamento 4-D, os movimentos em escala atômica que levam aos fenômenos estruturais, morfológicos e nanomecânicos agora podem ser visualizados diretamente e, quiçá, compreendidos," diz Zewail.
Nanorrevestimento se aproxima do lubrificante ideal


Um dos objetivos da atual missão do ônibus espacial Endeavour está sendo lubrificar as juntas que fazem girar os painéis solares da Estação Espacial Internacional, a fim de que eles possam estar sempre voltados para o Sol e capturem mais energia. O atrito, contudo, está fazendo com que eles desperdicem quase todo o ganho com esse posicionamento inteligente.
Este não é um problema exclusivo dos equipamentos no espaço. Na verdade, o atrito talvez seja o maior problema de qualquer máquina, em qualquer lugar. Sempre que duas partes mecânicas estão sujeitas à fricção, mais energia será despendida para movimentá-las. E, ao longo do tempo, isso significará uma redução na sua vida útil.


Lubrificante ideal


Existem inúmeras formas de lubrificar essas superfícies, mas os engenheiros estão sempre procurando o "lubrificante ideal," aquele que faça com que os equipamentos movimentem-se com o gasto mínimo de energia e sofrendo o menor índice de desgaste possível.
Engenheiros dos Laboratórios Ames, nos Estados Unidos, acreditam ter dado mais um passo rumo a esse lubrificante ideal. Eles usaram a nanotecnologia para criar um revestimento que pode ser aplicado às peças mecânicas sujeitas ao atrito, diminuindo esse atrito de forma surpreendente e praticamente não exigindo manutenções posteriores.


Cerâmica lubrificante


A base do nanorrevestimento é uma cerâmica formada pelos elementos boro, alumínio e magnésio - ela foi batizada de cerâmica BAM, as iniciais dos três elementos. Ao acrescentar o diboreto de titânio, os pesquisadores conseguiram aumentar ainda mais seu rendimento.
Embora seja possível construir as peças mecânicas a partir da própria cerâmica, é muito mais barato construi-las com os materiais convencionais, geralmente aço, e revesti-las com um material que lhes proteja contra o atrito.

Nanorrevestimento


Para testar o nanorrevestimento, os engenheiros utilizaram uma técnica chamada deposição por laser pulsado para depositar uma finíssima camada da liga na superfície interna dos pistões de bombas hidráulicas, um equipamento de grande uso na indústria e em máquinas e tratores de grande porte.
Os testes iniciais mostraram um decréscimo do atrito em relação à superfície não-tratada de pelo menos uma ordem de magnitude. O nanorrevestimento também se mostrou superior aos revestimentos de diamante e ao diboreto de titânio isoladamente.
Várias indústrias já se interessaram pelo nanorrevestimento antiatrito e estão testando sua aplicação em seus próprios equipamentos. O próximo trabalho da equipe será o desenvolvimento de métodos de aplicação do revestimento mais econômicas e mais facilmente aplicáveis no ambiente industrial do que a deposição por laser pulsado.

terça-feira, 18 de novembro de 2008

Sensor gera sua própria energia para monitorar indústrias


Sistemas de ar comprimido


Sistemas de ar comprimido não estão apenas em postos de gasolina para que você calibre os pneus do seu carro. Eles estão presentes em virtualmente todas as indústrias, existindo inclusive linhas de produção inteiramente pneumáticas, funcionando com base na pressão do ar.


Sensores de pressão


É claro que ocorrem vazamentos, que fazem a pressão do ar cair, podendo até mesmo interromper a produção na indústria até que o problema seja sanado. Para minimizar essas falhas, são utilizados sensores de pressão que monitoram constantemente a pressão do ar, apontando qualquer queda brusca que possa indicar o surgimento de um vazamento.
Embora funcionem bem, esses sensores de pressão poderiam ser melhores. Eles utilizam baterias, que precisam ser checadas constantemente, ou são ligados por fiações que introduzem incertezas e riscos adicionais ao próprio monitoramento de segurança. Isso sem contar os locais onde seria adequado que a pressão do ar fosse monitorada, mas que é impossível instalar um sensor lá.


Linhas de produção pneumáticas


Agora, pesquisadores do Instituto Fraunhofer, na Alemanha, criaram uma nova tecnologia que permite a fabricação de uma categoria inteiramente nova de sensores de baixa manutenção e energeticamente autônomos.
"Nosso sistema é eminentemente adequado para sensores em plantas pneumáticas, na medida que podemos converter a energia cinética do ar ou da água em eletricidade," explica o engenheiro Israel Ramirez.


Transdutor de energia fluídica


"O transdutor de energia fluídica gera eletricidade na faixa dos microwatts ou miliwatts. Isto é suficiente para abastecer os sensores de operação cíclica com energia suficiente para que eles leiam e transmitam os dados relevantes," diz Ramirez.
A conversão fluido-eletricidade ocorre no interior de um compartimento fechado, através do qual o fluido é injetado em trajeto similar ao do sangue passando pelo coração.
O chamado efeito Coandã faz com que o fluxo constante de fluido oscile. A oscilação produz uma flutuação periódica de pressão nas placas de retorno, que são acopladas a pequenos blocos de cerâmica piezoelétrica. A variação da pressão sobre a piezocerâmica faz com que ela gere a eletricidade necessária ao funcionamento do sensor de pressão.
A nova técnica pode ser utilizada em qualquer sistema no qual um fluido - ar, água ou qualquer gás - passe por uma geometria fixa. Outra grande vantagem é a eliminação total de partes móveis no monitoramento da pressão.

quinta-feira, 13 de novembro de 2008

Brasil desenvolve tecnologia de materiais luminescentes usando terras raras

Pesquisadores do Instituto de Química (IQ) da USP estão utilizando íons de terras raras para sintetizar compostos altamente luminescentes que podem ser usados como marcadores ópticos em exames médicos e para a confecção de dispositivos moleculares emissores de luz.

Os materiais desenvolvidos contribuirão para a inovação tecnológica de novos marcadores, fornecendo indicações que auxiliem na conservação de alimentos congelados, vacinas e medicamentos.

Terras raras

"Embora se utilize o termo terras raras, na verdade ele diz respeito a elementos que exigiam processos complexos para serem isolados", aponta o professor Hermi Felinto de Brito, do IQ, que coordena a pesquisa. "O elemento menos abundante dessa categoria, o Túlio, é mais comum na natureza do que o ouro, a prata e a platina".

Submetidas a radiação ultravioleta os íons terras raras emitem luzes de colorações variadas, como vermelho (európio trivalente), azul (túlio trivalente) e verde (térbio trivalente).

Alta intensidade luminescente

O estudo testou a utilização do európio bivalente combinado com silicatos e aluminatos para a produção de fósforos (compostos que emitem luz) que apresentem persistência luminosa. "A adição de pequenas concentrações de terras raras (dopagem) em matriz inorgânica, como sílica e alumina, permite que o sistema apresente alta intensidade luminescente quando irradiado", conta Tiago Becerra Paolini, aluno de mestrado do IQ.

O marcador óptico em estudo armazena energia quando irradiado a baixa temperatura e a sua emissão só acontece quando há aumento de temperatura. "Em embalagens de alimentos congelados, por exemplo, o marcador seria colocado em uma etiqueta lacrada", explica Roberval Stefani, pós-doutorando do IQ e participante do projeto. "Se o produto for descongelado no armazenamento, a energia irá se dissipar e a etiqueta com o marcador perderá a luminescência, o que poderá ser visualizado pelo consumidor ao abrir o lacre".

LEDs, monitores e lâmpadas

Atualmente, compostos de terras raras vêm sendo empregados em dispositivos luminosos, como lâmpadas fluorescentes, dispositivos orgânicos emissores de luz (OLED) e monitores de computador.

"Um fenômeno interessante exibido por alguns compostos de terras raras é a persistência luminosa, que é uma emissão luminosa que persiste por um longo período de tempo (aproximadamente 10 horas) depois de cessada a excitação (UV, luz do dia etc.)", aponta Brito. Esse tipo de material luminescente pode ser utilizado, dentre outros, em sinalização de emergência (hospitais, laboratórios, edifícios etc.), sinalização de trânsito e tintas fosforescentes.

Usos dos marcadores ópticos

Além da indústria alimentícia, o marcador óptico pode ser adotado em medicamentos e vacinas que necessitem de refrigeração. "A conservação desses produtos exige cuidados especiais, pois pequenas variações de temperatura podem comprometer todo o material", destaca Stefani. "A utilização dos marcadores pode ajudar a tornar mais adequadas as condições de conservação e armazenamento".

De acordo com Paolini, o marcador será aperfeiçoado com o aumento do tempo de persistência luminosa bem como de sua intensidade de emissão. "A idéia é que ele possa ser incluído na composição de alguma das tintas utilizadas para imprimir etiquetas", planeja. "Uma empresa do setor de impressão já manifestou interesse em receber a tecnologia em seus processos produtivos".

Outra aplicação prevista é a utilização de compostos luminescentes em sistemas de rastreabilidade. "Devido à grande ocorrência de roubos de cargas, os marcadores poderiam ajudar na localização de produtos farmacêuticos, entre outros", acrescenta o pós-doutorando. O professor Brito lembra que o Brasil é o sétimo produtor mundial de terras raras, que são abundantes nas areias monazíticas do litoral do Sudeste e do Nordeste e na região do Planalto Central, em Goiás.

Nariz eletrônico é capaz de detectar cheiros desconhecidos

Nariz eletrônico é capaz de detectar cheiros desconhecidos

Usos do nariz eletrônico

Além de monitorar processos industriais - na indústria de alimentos, farmacêutica e de produtos de beleza - e garantir a segurança de astronautas - detectando qualquer emissão tóxica no interior da nave - o nariz eletrônico é uma ferramenta cada vez mais pesquisada para a detecção de contaminantes ambientais e até de agentes patogênicos que possam estar se espalhando pelo ambiente.

Detectando cheiros desconhecidos

A grande vantagem da nova abordagem, em relação aos narizes eletrônicos já existentes, é a capacidade para detectar assinaturas químicas para as quais o nariz eletrônico não foi previamente treinado. Embora já existem equipamentos semelhantes com sensores à prova de desgaste, o módulo de reconhecimento adapta-se automaticamente às variações nas respostas do sensor à medida que ele envelhece.

O sensor do nariz eletrônico é na verdade um conjunto composto por oito sensores integrados, cada um construído para detectar uma família diferente de compostos químicos - os cheiros chegam até o nosso nariz na forma dos chamados elementos-traço, minúsculas quantidades de compostos químicos que representam a "assinatura" de cada material ou produto.

Essas moléculas cheirosas ativam neurônios sensoriais que transformam as interações químicas em sinais elétricos, por sua vez interpretados pelo cérebro como cheiros. Nós possuímos cerca de 350 tipos de neurônios sensoriais; animais como cães e ratos têm centenas de vezes mais do que isso.

segunda-feira, 10 de novembro de 2008

Sensor monitora ossos e implantes sem eletrônica e sem baterias


O sensor mecänico passivo não contém nenhuma parte eletrônica e não requer energia para funcionar.
Cientistas suíços desenvolveram um novo tipo de sensor mecânico passivo, sem fios e sem circuitos eletrônicos, que permitirá que os médicos acompanhem a recuperação de ossos fraturados à medida em que eles se recuperam. Os dados coletados podem ser lidos por meio de um aparelho de ultra-som comum e interpretados por um programa de computador.
Dependendo dos valores das forças medidas pelo sensor, os médicos poderão decidir se o processo de cicatrização óssea e recalcificação está progredindo normalmente ou se há risco de que a fratura ou implante possam estar sofrendo sobrecargas, o que exigiria uma pronta intervenção.
Sensores sem fios e sem eletrônica
Já existem sensores com a mesma finalidade, mas eles são grandes e empregam complicados circuitos eletrônicos para enviar os dados coletados para fora do organismo, onde podem ser coletados como ondas de rádio.
Segundo o engenheiro Felix Gattiker, do laboratório Empa, sensores mecânicos passivos, sem partes eletrônicas terão muitas vantagens além de não usarem baterias, principalmente no aspecto financeiro, por que custarão muito menos. Além disso eles estarão muito menos sujeitos a falhas.
Medindo compressão e tensão
O sensor mecânico tem a forma de uma pequena espiral feita com tubos ocos, que é instalado sobre o implante ou a fratura, juntamente com um reservatório de líquido. Quando o implante é sujeito a compressão ou tensão, o nível do fluido na espiral muda.
O médico pode ler o nível do fluido com a ajuda de um aparelho de ultra-som. Um programa de computador então se encarrega de transformar o dado lido em uma informação sobre a carga a que está sujeito o implante.
Eco e força
A imagem do ultra-som propriamente dita é muito ruim para que o nível do fluido seja determinado visualmente. Para resolver essa limitação, os pesquisadores aproveitaram o fato de que há uma dependência entre o eco ultra-sônico produzido por toda a espiral e o nível real de líquido em seu interior - quando mais o alto nível do fluido, mais fraco será o eco que retorna do sensor, o que significa uma maior força atuando sobre ele.
O novo sensor já passou por todos os testes iniciais, inclusive nas avaliações econômicas, sendo mais barato de se produzir do que os equipamentos hoje disponíveis no mercado. O próximo passo da pesquisa é fazer os testes em animais, um passo necessário antes que ele possa vir a ser utilizado em humanos.

quarta-feira, 5 de novembro de 2008

A ciência por trás do carro mais veloz de todos os tempos


Andy Green, o atual recordista mundial de velocidade em carros, e Richard Noble, o recordista anterior, uniram-se para construir um novo carro supersônico e estabelecer um novo recorde de velocidade terrestre. Eles estão construindo o BloodHound SSC (Super Sonic Car), que deverá se tornar o carro mais veloz de todos os tempos ao atingir mach 1.4.
Antes que isso seja possível, várias equipes de engenheiros e cientistas estão se debruçando sobre as pranchetas e inserindo gigantescas quantidades de dados em seus simuladores computadorizados, levando os conhecimentos científicos ao limite, a fim de viabilizar o projeto.
Carro supersônico
O carro supersônico, capaz de viajar a mais de 1.600 quiilômetros por hora, impulsionado por uma turbina e por um motor-foguete, deverá também ter os elementos mínimos para garantir a segurança do seu piloto. Entre os componentes mais críticos, estão as rodas e o próprio motor-foguete.
O BloodHound será inicialmente impulsionado por uma turbina EJ-200, até atingir a velocidade de 460 km/h. Neste ponto, o motor-foguete será acionado, e o carro será acelerado até o recorde pelo funcionamento simultâneo da turbina e do foguete. Ao atingir a velocidade máxima pretendida pela equipe, de 1.680 km/h, os motores são desligados e o carro começará a desacelerar.
Rodas antichoque
Para levar o carro muito acima da velocidade do som, as rodas do BloodHound deverão girar a 10.500 rpm, sem se deformar e sem sofrer qualquer dano pelas pedras que elas fatalmente encontrarão pela pista, localizada em um deserto.
Também deverão ser leves e resistentes o suficiente para suportar todas as forças necessárias, não apenas para suportar o peso do carro, mas principalmente das cargas sofridas durante a aceleração e a desaceleração.
Os cientistas do laboratório NPL, da Inglaterra, estão encarregados de projetar estas rodas. Eles estão trabalhando com vários materiais, avaliando ligas de titânio, alumínio e metais compósitos. Além das exigências de peso, suspensão e frenagens, as rodas deverão suportar as ondas de choque criadas quando a velocidade do som for ultrapassada.
Aerodinâmica do carro supersônico
A equipe da Universidade Swansea será a responsável por analisar as questões aerodinâmicas do carro supersônico. "Do nariz à cauda, nós estamos modelando qualquer coisa que tenha qualquer tipo de influência aerodinâmica," diz o pesquisador Ben Evans.
Estudos desse tipo normalmente são feitos em túneis de vento. Só que não existem túneis de vento capazes de simular um carro correndo sobre o solo acima da velocidade do som - o BloodHound deverá viajar a uma velocidade cinco vezes maior do que a velocidade de um carro de Fórmula 1.
Dinâmica dos Fluidos Computacional
Tudo será simulado utilizando a Dinâmica dos Fluidos Computacional. Embora o carro atualmente detentor do recorde mundial de velocidade tenha superado a barreira do som por alguns segundos, o BloodHound atingirá mach 1.4, mantendo uma velocidade supersônica por um tempo muito mais longo.
"Uma vez que você se aproxima, e então supera a velocidade do som, você não pode mais enviar uma onda de pressão adiante para dizer ao ar à frente que você está chegando. O que acontece é que surge um gigantesco muro de pressão à sua frente. Em vez do ar sair lenta e suavemente do seu caminho, em velocidades supersônicas essas mudanças acontecem repentinamente em uma onda de choque," explica Evans.
São essas ondas de choque que chegam ao solo na forma de um estrondo quando um avião ultrapassa a velocidade do som. O desafio dos cientistas é descobrir como essa onda irá se comportar e interagir com o carro, que estará a poucos centímetros do solo.
Os próprios cientistas afirmam que não sabem exatamente quais são os desafios com que eles irão se defrontar, e que novos problemas fatalmente surgirão conforme eles forem avançando.
Por isto, a própria equipe está lançando desafios para a comunidade científica, para que questões adicionais possam ser levantadas e pesquisadas. A equipe planeja fazer sua primeira tentativa de bater o recorde mundial de velocidade sobre o solo em 2011.

COMPARE PREÇOS DE : Carros, Motos Novas.

segunda-feira, 3 de novembro de 2008

Hidrogênio biológico poderá ser produzido a partir do esgoto

Um projeto de pesquisa que integra a geração de energia e o controle da poluição ambiental rendeu a docentes e estudantes da Escola de Engenharia de São Carlos (EESC - USP), a primeira colocação na quinta edição do Prêmio Mercosul de Ciência e Tecnologia, na categoria Integração.

O trabalho foi feito por pesquisadores do Laboratório de Processos Biológicos da EESC, em parceria com colegas da Universidade da República (Udelar), no Uruguai.

Hidrogênio renovável

O estudo propõe a produção de hidrogênio como fonte de energia renovável, em alternativa aos combustíveis fósseis, a partir do tratamento de águas residuárias.

Um dos coordenadores, Marcelo Zaiat, professor do Departamento de Hidráulica e Saneamento da EESC, explica que a produção biológica de hidrogênio pode ocorrer por duas vias: fotossíntese e processo fermentativo.

"A produção fermentativa foi o tema abordado na pesquisa, que objetivou o desenvolvimento de biorreatores anaeróbios e o estudo das melhores condições para produção de hidrogênio. A fermentação é tecnicamente mais simples e, nesse caso, o hidrogênio pode ser obtido a partir da matéria orgânica presente em águas residuárias", disse Zaiat à Agência FAPESP.

Hidrogênio extraído do esgoto

Segundo ele, o processo anaeróbio de conversão de matéria orgânica divide-se basicamente em duas fases: acidogênica e metanogênica. O hidrogênio é obtido na primeira fase (acidogênica), a qual é mediada por organismos que consomem a matéria orgânica das águas residuárias e produzem ácidos orgânicos, álcoois e hidrogênio.

"O desafio nessa fase está no desenvolvimento de reatores biológicos mais adequados para essa conversão, permitindo a maximização da produção de hidrogênio. O uso de biorreatores acidogênicos conjugados com os metanogênicos possibilita o tratamento de água residuária, assim como a produção de hidrogênio como fonte de energia", apontou.

Biohidrogênio mais controle da poluição

Nesse contexto de associação entre a produção de hidrogênio com baixo custo e o controle da poluição ambiental, Zaiat aponta que os trabalhos de pesquisa na área começaram a ser desenvolvidos na década de 1990 e que, até hoje, mais de 200 estudos sobre bioprodução de hidrogênio já foram publicados no mundo.

Os grupos de pesquisa premiados da USP e da Udelar têm desenvolvido reatores biológicos inovadores com o aprimoramento de parâmetros de engenharia para maximizar a produção de hidrogênio.

"Muitos problemas de engenharia ainda devem ser resolvidos antes de essa tecnologia poder ser aplicada em escala industrial, mas os dois grupos têm trabalhado com águas residuárias de várias origens, buscando aplicações em vários setores produtivos ligados à América Latina", apontou o professor da USP.

Águas residuárias

Águas residuárias são águas utilizadas em algum processo, seja industrial ou residencial, e que são devolvidas ao ambiente. Um exemplo são os esgotos domésticos que, lançados nos rios sem o devido tratamento, podem causar impactos negativos ao meio ambiente.

"O nosso projeto propõe que, acoplado à estação de tratamento do esgoto doméstico, possa estar um reator acidogênico para produção do hidrogênio, um combustível limpo que gera, nas células, a água como único produto", disse Zaiat. Entre as formas de obtenção de hidrogênio estão a queima de combustível fóssil, eletrólise e a produção biológica.

Combustível limpo

"A produção biológica é a mais atrativa por envolver tecnologias de baixo custo quando comparada a outras técnicas, além de requerer menos energia para geração. Esse tipo de produção pode contribuir para a redução de custos na geração de hidrogênio principalmente se a matéria-prima, os compostos orgânicos, for obtida de águas residuárias geradas por indústrias ou esgoto de domicílios", afirmou.

Segundo o pesquisador, além de ser um combustível limpo, outra vantagem é que o hidrogênio é quase três vezes mais energético do que os hidrocarbonetos. "Essa conta é feita pela termodinâmica. O calor de combustão do hidrogênio é de 122 quilojoules por grama (kJ/g), cerca de 2,75 vezes maior do que o dos hidrocarbonetos", calculou.

Robô assistente é inspirado em cão-guia para cegos

Se o cão já é considerado o melhor amigo das pessoas sem deficiências físicas, torna-se difícil definir a relação entre um cão-guia e uma pessoa cega. O animal treinado é capaz de alterar completamente a rotina do deficiente, permitindo o desempenho de tarefas impossíveis sem ele e melhorando muito a qualidade de vida do seu dono.

O problema é que um cão-guia para cegos é um luxo para poucos. Um animal treinado, geralmente importado, pode chegar a custar até US$40.000,00.

Cães-guia robóticos

A solução para esse problema, abrindo caminho para que mais cegos possam ter acesso a guias treinados, pode estar nos robôs - nos cães-guia robóticos. Esta é a proposta de pesquisadores do Instituto de Tecnologia da Geórgia, nos Estados Unidos.

Mesmo não lembrando em nada um cão, o robô-guia é capaz de imitar 10 tarefas comumente feitas por um cão-guia, podendo inclusive ser acionado pela voz do seu dono.

Robô assistente

O robô assistente é dotado de um braço multifuncional, montado sobre uma torre, o que permite que o braço deslize para alcançar objetos em várias alturas. Isso o torna capaz, por exemplo, de apanhar um controle remoto caído no chão, girar a maçaneta de uma porta, abrir gavetas ou acionar os interruptores de luz.

"É um caminho para termos robôs por aí ajudando as pessoas brevemente," diz o pesquisador Charlie Kemp. "Cães de serviço têm uma longa história no auxílio das pessoas, mas há uma lista de espera de vários anos. É algo muito caro de se ter. Nós acreditamos que os robôs eventualmente irão nos ajudar a atender a essas necessidades."

Cães de serviço como inspiração par robôs

O próprio robô ainda tem deficiências, que precisarão ser sanadas em futuras versões. Por utilizar rodas, ele tem sua mobilidade muito limitada. E vários comandos exigem que o usuário aponte o objeto desejado com uma caneta a laser, o que torna essas funcionalidades inacessíveis às pessoas cegas, embora continuem sendo úteis para outros deficientes e para pessoas idosas.

Contudo, a inspiração em cães-guia para a construção de robôs assistentes parece ser promissora. "Eu acredito que nós seremos capazes de atingir as capacidades de um cão-guia muito antes de atingirmos as capacidades de um enfermeiro humano," diz Kemp.

quarta-feira, 29 de outubro de 2008

Bicicletas inteligentes terão sistema regenerativo


Pesquisadores do MIT, nos Estados Unidos, estão adaptando para as bicicletas o sistema regenerativo já utilizado nos carros de Fórmula 1 e nos veículos híbridos e elétricos.


Sistema regenerativo para bicicletas


O sistema regenerativo captura a energia criada durante as frenagens, liberando-a quando os veículos precisam acelerar, economizando combustível e aumentando o rendimento.
Agora as bicicletas poderão contar com o mesmo sistema. A energia cinética dos freios é transformada em energia elétrica, que aciona um motor elétrico auxiliar nos momentos de maior esforço do ciclista.
O sistema todo, incluindo as baterias onde a energia é armazenada, fica num invólucro localizado no cubo da roda traseira. Esse projeto compacto permitirá que o equipamento seja utilizado em virtualmente qualquer bicicleta, mesmo naquelas fabricadas antes da criação do "cubo inteligente."


Identificação eletrônica de bicicletas


O equipamento regenerativo para bicicletas foi desenvolvido dentro de um projeto de pesquisa que está transformando a vida dos ciclistas na cidade de Copenhague, na Dinamarca. Cada bicicleta receberá uma etiqueta eletrônica de identificação que permitirá seu rastreamento e monitoramento dos locais e distâncias percorridas.
O lado mais interessante do projeto é a interação entre os ciclistas que o novo sistema permitirá. O sistema central de controle e rastreamento das etiquetas eletrônicas permitirá que cada ciclista localize todos os outros com os quais ele cruzou durante o dia ou aqueles que fazem o mesmo trajeto.


Eu cruzei seu caminho


"Nós desenvolvemos uma aplicação no Facebook, chamada 'Eu cruzei seu caminho', que cria uma rede social para os ciclistas, permitindo que eles se conectem com pessoas com as quais pedalaram juntos durante o dia, potencialmente estabelecendo novas conexões," diz a pesquisadora Christine Outram, que coordena o projeto.
Além de monitorar as distâncias percorridas, o sistema de etiquetas inteligentes dará a cada ciclista um crédito, em um mecanismo parecido com os sistemas de milhagem utilizados pelas companhias aéreas. Ao acumular um determinado número de pontos o ciclista fará jus a um ano de cereais matinais de graça.


Impacto ambiental das ações individuais


"O simples ato de compartilhar essa informação e mostrar aos indivíduos o impacto ambiental de suas ações pode ser muito forte. Pesquisas têm mostrado que as alterações comportamentais são uma das mais poderosas forças para lidar com as mudanças climáticas e reduzir as emissões de carbono," afirma a pesquisadora.
Em última instância, o monitoramento preciso das atividades urbanas poderá permitir às cidades entrar em esquemas de comercialização de cotas de carbono. As cidades poderão obter fundos para ações sustentáveis em troca de seus esforços para diminuir as emissões de carbono.
O impacto poderá ser considerável porque as cidades abrigam cerca de metade da população mundial, mas são responsáveis por uma fatia bem maior da emissão total de carbono causada pelo homem.

terça-feira, 28 de outubro de 2008

Internet empurra para mudança evolutiva do ser humano, diz cientista

A internet não está apenas transformando a forma como as pessoas vivem, mas também alterando a maneira como o cérebro funciona, com uma mudança evolutiva que coloca o internauta em uma nova ordem social. Essa é definição de um estudo produzido pelo neurocientista da Universidade da Califórnia, Gary Small, especialista em função cerebral.

Apesar da tecnologia acelerar a aprendizagem e desenvolver a criatividade, o cientista afirma que a internet pode gerar problemas como a criação de amizades exclusivamente virtuais e o aumento de diagnósticos de DDA (Distúrbios do Déficit de Atenção).

Segundo Small, as pessoas que serão beneficiadas na próxima geração serão aquelas que conseguirem aliar habilidades sociais e tecnológicas. "Estamos vendo uma mudança evolutiva", diz.

O estudo com 24 adultos que usavam a web descobriu que os usuários mais experientes mostraram o dobro da atividade cerebral em áreas que controlam a tomada de decisões e de raciocínio.

"Nós estamos mudando o ambiente. O jovem médio já gasta nove horas por dia expondo seu cérebro à tecnologia", afirma.

Small explica que existem medidas que podem resolver o problema da perda do contato humano e da capacidade de ler expressões emocionais e linguagem corporal. "Uma delas é diminuir o tempo com a tecnologia e ter um jantar em família, por exemplo, para encontrar um equilíbrio."

A MECÂNICA DO TEMPO E DO NOSSO DIA A DIA

Ano de 1959. Nasce no Brasil a Feira da Mecânica Nacional, envolvida pelo clima de otimismo econômico do governo Juscelino Kubitschek que estabeleceu um Plano de Metas para modernizar o País. A iniciativa de organizar a feira partiu de Caio de Alcantara Machado, fundador da Alcantara Machado Feiras de Negócios, apoiada por Einar Kok, então presidente do Sindimaq - Sindicato da Indústria de Máquinas do Estado de São Paulo.
A primeira edição, de 14 a 29 de novembro, no Pavilhão da Indústria, no Parque do Ibirapuera, cidade de São Paulo, reuniu 220 expositores e foi visitada por cerca de 200 mil pessoas, atraídas pela possibilidade de conhecer o que se fabricava no Brasil naquela época nos setores metalmecânico, elétrico e eletrônico, de transportes, entre outros. O evento seguinte, em 1961, durante 14 dias, contou com 229 expositores, atraiu 150 mil visitantes mais qualificados e já não teve a curiosidade como atrativo, começando a exercer seu papel de promotor de negócios.
Na quarta edição, em 1963, entraram os primeiros expositores internacionais, três empresas da Argentina e uma do México. Nessa feira houve uma área específica para a 1a FEE – Feira da Indústria Eletroeletrônica, o primeiro embrião que se transformou na atual Feira Internacional da Indústria Elétrica e na electronicAmericas. A Feira da Mecânica Nacional deu início a seu ciclo de dois em dois anos, ainda no Ibirapuera, em 1966. Em 1972, a Feira começou uma nova fase no Pavilhão de Exposições do Anhembi. Com 270 expositores e durando dez dias, ela tornou-se setorial, destinada somente ao público profissional.
Em 1976, dividindo espaço com a Feira da Indústria Eletroeletrônica, deixou o pavilhão do Parque Anhembi lotado, com 493 expositores. A Alcantara Machado anunciou, nesse ano, a separação das duas feiras, além da parte de refrigeração e ar condicionado - origem da atual Feira Internacional de Refrigeração, Ar Condicionado, Ventilação, Aquecimento e Tratamento do Ar (Febrava), o que se realizou em 1978, possibilitando a setorização dos expositores da Mecânica.
Um dos acontecimentos importantes ocorridos durante sua 13a edição, em 1980, foi o agrupamento do segmento de máquinas-ferramenta em um espaço específico, originando seu terceiro embrião ( que se tornou independente em 1989), denominado, hoje, Feira Internacional de Máquinas-Ferramenta e Sistemas Integrados de Manufatura (Feimafe). Em 1986, a vitalidade dos fabricantes de máquinas para plásticos fez com que surgisse um outro embrião da feira, gerando em 1987 a Feira Internacional da Indústria do Plástico (Brasilplast).
Com 922 expositores, dos quais 287 estrangeiros, e com a nova denominação de Mecânica’ 92 – Feira da Mecânica, o evento preparava passagem para a internacionalização. O que se concretizou em 1994, em sua 20a edição, quando ganhou o nome de Mecânica – Feira Internacional da Mecânica.
Foi a Mecânica que deu origem às feiras industriais no Brasil. O evento nasceu na era da produção em massa, superou o tempo e hoje, dentro de economia globalizada e numa era de produção personalizada, tornou-se um dos mais importantes do setor na América Latina e um dos mais tradicionais do mundo.
Ano de 2008. A Feira Internacional da Mecânica chega à sua 27a edição - com cerca de 1.950 expositores de mais de 35 países e público estimado em 115 mil visitantes/compradores, de 40 países. O evento, que ajudou a impulsionar o desenvolvimento econômico e tecnológico brasileiro ao longo desses anos, beneficiou, e continua beneficiando, o nosso dia-a-dia com suas Máquinas que Transformam o Mundo.

domingo, 26 de outubro de 2008

Trânsito terá controle de semáforos em tempo real


Criar um sistema de controle de tráfego que facilite o fluxo de veículos, diminuindo congestionamentos e o tempo de espera em semáforos é um desafio para as cidades.

Para colaborar com soluções para esta problemática, há mais de oito anos um grupo de pesquisa do Departamento de Automação e Sistemas da UFSC trabalha em um projeto pioneiro no Brasil, desenvolvendo tecnologias capazes de controlar o trânsito em tempo real.

Controle de tráfego em tempo real

O Projeto de Controle de Tráfego por Área em Tempo Real (Contreal), coordenado pelo professor Werner Kraus Junior, criou softwares que adaptam os semáforos ao fluxo de veículos de forma automática e instantânea, com base na medição do tráfego feita por sensores instalados nas vias. O sistema evita retenções desnecessárias, proporcionando economia de combustível e tempo, e ajusta-se de forma autônoma a situações inesperadas, como acidentes de trânsito.

De acordo com o professor, o controle em tempo real surge como uma alternativa ao sistema de planos fixos, em que os tempos dos semáforos são programados de acordo com a hora do dia, com base em contagens manuais do tráfego. Esta solução tradicional, segundo Werner, limita o desempenho da operação viária, já que as condições de trânsito não dependem somente do horário, mas também de fatores como o crescimento da frota e condições meteorológicas, acidentes e eventos ? situações que não são previstas nos planos. Além disso, os dados obtidos nas contagens se tornam obsoletos com o tempo, sendo necessárias constantes atualizações.

Colaboração universidade-empresa

A UFSC é única universidade do Brasil a possuir um núcleo de pesquisa que atua ao mesmo tempo no desenvolvimento de técnicas de controle, equipamentos e centrais de tráfego. O impulso inicial foi dado no ano 2000, quando Werner Kraus firmou parceria com a Brascontrol, empresa brasileira que desde 1992 atua na área de controle de tráfego, fabricando equipamentos como radares, lombadas eletrônicas e controladores de trânsito.

Vislumbrando a possibilidade de colocar em prática o conhecimento adquirido a partir de estudos teóricos feitos na universidade sobre planos para os semáforos em tempo real, o acordo propôs o desenvolvimento de tecnologias capazes de serem implementadas em grandes cidades, perspectiva também de forte interesse para a Brascontrol. "Ter um controle em tempo real é o sonho de toda empresa que trabalha com trânsito", diz Waldir José Nobre, diretor da companhia.

Por conta dessa parceria, os estudos sobre sistemas de controle de tráfego no Departamento de Automação e Sistemas cresceram consideravelmente. Até este ano, foram desenvolvidas seis dissertações, duas teses e mais de 15 trabalhos de iniciação científica relacionados ao tema. Atualmente fazem parte do projeto cinco professores, dois engenheiros, cinco alunos de graduação, um mestrando e dois doutorandos.

Colaboração universidade-universidade

Um marco para o projeto foi o ano de 2004, quando o núcleo de pesquisa fez contato com o professor Markos Papageorgiou, renomado pesquisador da Universidade Tecnológica de Creta (Grécia) na área de controle de tráfego em tempo real. No ano seguinte, um convênio firmado com o especialista forneceu ao grupo da UFSC fundamentos teóricos para definir a linha conceitual do trabalho, além de um software que foi incorporado ao sistema brasileiro.

Visão global da malha viária

A abordagem usada pelo grupo leva em conta uma visão global da malha viária. Com base em medições de sensores de toda uma região de tráfego, o sistema é capaz de decidir qual ação deve ser tomada em cada cruzamento. "Essa proposta de controle simplifica o tratamento dado às medições do trânsito, tornando mais robustas as decisões de controle em face de problemas isolados de detectores de veículos", explica Werner.

Ondas verdes

Segundo o professor, uma importante modificação desenvolvida na UFSC em relação ao estudo original de Markos Papageorgiou foi a inclusão das "ondas verdes" no método de controle. O sistema permite à central especificar quais corredores arteriais terão sincronismo máximo para a passagem de pelotões de veículos. "O método resultante é o único no mundo que calcula em tempo real as melhores ondas verdes para uma dada situação de tráfego", afirma.

Os benefícios são medidos em relação à eficácia na diminuição do tempo de viagem dos motoristas. O controle em tempo real reduz entre 15% e 20% o atraso e o número de paradas dos veículos, em comparação com sistemas de planos fixos bem ajustados. "Como existem muitas situações em que os planos fixos não estão programados de acordo com as reais necessidades do trânsito local, esperamos ganhos ainda maiores com a implantação do tempo real", adianta Werner.

Mais uma vantagem do projeto é seu baixo custo. O pesquisador afirma que a comunicação entre controladores e central, feita via celular, é mais econômica, pois o uso da tecnologia GPRS/GSM tem custo de implantação e manutenção menor do que o uso de infra-estrutura de fios e cabos para comunicação entre modens convencionais.

Funcionamento do Sistema Contreal

  • No pavimento das vias são colocados sensores capazes de contar o número de veículos em trânsito.
  • Esses sensores contêm um circuito eletrônico, o "detector eletrônico", que tem sua freqüência de ressonância alterada na presença de veículos, devido à massa metálica destes.
  • Os dados de contagens de tráfego são enviados à central de controle a cada ciclo semafórico, que dura de um a dois minutos.
  • Com os dados do tráfego, a central calcula em tempo real os tempos semafóricos para a região controlada.
  • A comunicação entre controladores e central é feita via celular, usando a tecnologia GPRS/GSM

quarta-feira, 22 de outubro de 2008

Metais biodegradáveis criarão nova geração de implantes médicos



Três universidades norte americanas (Pittsburgh, Carolina do Norte e Cincinnati) estão unindo esforços para criar uma nova geração de dispositivos ortopédicos, craniofaciais e cardiovasculares que se adaptam à anatomia física do paciente e se dissolvem quando não são mais necessários.
O principal objetivo da pesquisa é reduzir a necessidade de cirurgias adicionais de acompanhamento e retirada dos dispositivos quando eles não são mais necessários, evitando o grande número de complicações que hoje acontecem nos procedimentos ortopédicos, evitando gastos com médicos e hospitais e reduzindo as necessidades de internações.


Otimizando o processo natural de regeneração


"O tratamento de tecidos doentes e traumatizados está evoluindo conforme as tecnologias médicas controlam cada vez mais os poderes regenerativos do corpo," explica o Dr. William Wagner, um dos participantes da pesquisa.
"Esta pesquisa irá ampliar esse enfoque combinando os atributos mecânicos dos metais com agentes biologicamente ativos que, juntos, irão favorecer ainda mais o processo natural de cicatrização," diz ele.


Metais biodegradáveis


As próteses, órteses e equipamentos médicos serão construídos a partir de ligas especiais de magnésio, às quais serão adicionados diversos tipos de agentes biológicos para promover a cicatrização e evitar a rejeição e as inflamações.
Os novos equipamentos biodegradáveis deverão beneficiar pacientes com condições tão diversas quanto os portadores de fissuras lábio-palatais, acidentados com fraturas ósseas e portadores de doenças cardíacas.
Por exemplo, as crianças com fissura lábio-palatal geralmente utilizam um dispositivo de metal rígido que deve sofrer manutenções periódicas e ser trocado conforme a criança cresce. O objetivo dos pesquisadores é limitar ao máximo a necessidade dessas manutenções, já que os metais biodegradáveis poderão se adaptar ao corpo naturalmente.


Ligas de magnésio


As ligas de magnésio e de alguns outros metais biodegradáveis praticamente dissolvem-se no organismo depois de terem cumprido sua função estrutural, praticamente sem nenhum efeito colateral. O processo de biodegradação poderá ser induzido com a adição de compostos químicos.
Reações eletroquímicas entre o organismo e o metal biodegradável fazem com que este se dissolva. O processo é uma espécie de oxidação, por meio da qual os íons do metal se espalham nos tecidos ao redor, reagindo posteriormente com a água para formar hidróxidos estáveis, óxidos ou mesmo para formar complexos protéicos.
A maioria das pesquisas até agora nesse campo vinha se concentrando em polímeros biodegradáveis, mas os cientistas acreditam que os metais biodegradáveis poderão ter grandes vantagens em casos nos quais a leveza e a resistência do material são elementos cruciais para o sucesso das cirurgias.
Bionanotecnologia exige envolvimento do público]


As moléculas de DNA são alvo de pesquisa não apenas para manipulação da vida, mas também para uso como instrumentos na construção de nanomáquinas

Um relatório que acaba de ser divulgado pela União Européia afirma que o público deve se engajar nas discussões sobre a bionanotecnologia, um campo emergente da ciência e da tecnologia que tem o potencial para transformar radicalmente a sociedade.

Potencial transformador da bionanotecnologia

Diversas pesquisas mostram que o público desconhece e, mais importante, teme o que está por vir, principalmente depois do lançamento de livros e documentários que divulgam o potencial transformador da bionanotecnologia.
O relatório, que combina comunicação científica com pesquisa em ética na bionanotecnologia, é resultado de uma série de encontros de trabalho entre cientistas de várias partes do mundo.

Questões sociais e éticas das pesquisas científicas

Seu objetivo principal é antecipar as questões sociais e éticas que serão fatalmente levantadas no decorrer do avanço das pesquisas científicas na área emergente da bionanotecnologia, permitindo que a sociedade se prepare e se antecipe aos problemas potenciais já vislumbrados antes que eles ocorram.
Os pesquisadores descobriram uma grande divergência na forma como as pesquisas em nanociências, nanotecnologia e biotecnologia estão sendo conduzidas nos diversos países. Na Europa, por exemplo, os chamados "aprimoramentos humanos" estão focados na medicina regenerativa e no combate às doenças neurodegenerativas.
Já nos Estados Unidos o interesse é basicamente militar, focando-se na criação de "soldados biônicos." O debate entre os norte-americanos também gira ao redor da natureza da condição humana e como nós podemos melhorá-la, em vez de simplesmente reparar nossos estados de saúde física e mental.

Medos da tecnologia

Os medos com respeito à bionanotecnologia parecem disseminados quando o assunto é tecnologia de nanoalimentos, normalmente associados aos alimentos geneticamente modificados. Também dominando as discussões estão certas idéias baseadas na ficção científica, como máquinas capazes de se auto-replicar, construindo outras iguais a elas mesmas.
A nanomedicina é vista sob um olhar muito mais favorável, principalmente avanços como o desenvolvimento de drogas inteligentes, sob o conceito conhecido como "drug delivery", para combate ao câncer.

Bate-papos sobre nanotecnologia

No Brasil, os avanços da bionanotecnologia e seu impacto sobre a sociedade são discutidos rotineiramente pelo projeto Renanosoma (Rede de Pesquisa em Nanotecnologia, Sociedade e Meio Ambiente), financiado pelo CNPq. Sob a coordenação do Dr. Paulo Roberto Martins, o projeto patrocina bate-papos pela internet três vezes por semana.
Os bate-papos, que são abertos à participação de qualquer interessado, são baseados em entrevistas com renomados pesquisadores nas mais diversas áreas ligadas à nanotecnologia e à nanociência.
Os encontros virtuais ocorrem às segundas (19:00 horas), quartas (14 horas) e sextas-feiras (10 horas), sempre no endereço http://meebo.com/room/nanotecnologia.

sábado, 18 de outubro de 2008

Descoberto porque ligas metálicas se degradam

A fadiga em ligas metálicas é responsável por grandes prejuízos à indústria, causados por componentes que falham inesperadamente sob cargas que eles deveriam suportar com folga. Falhas desse tipo também são responsáveis por grande parte dos "recalls" feitos pela indústria automobilística para a substituição de componentes que podem apresentar defeitos.

Agora, pesquisadores da Universidade de Michigan, nos Estados Unidos, lançaram alguma luz sobre esse tipo de falha inesperada. Ao explicar por que ela acontece, torna-se possível descobrir formas de evitá-la.

Ligas metálicas policristalinas

As ligas metálicas são sólidos formados por pelo menos dois elementos metálicos diferentes. Esses elementos são misturados em estado líquido, fundidos. Quando eles resfriam e voltam a se solidificar, são criados minúsculos cristais em sua estrutura atômica, formando o que se chama de um material policristalino.

No interior de cada cristal, os átomos se organizam em um padrão - uma estrutura que se repete de forma periódica. Contudo, essas estruturas não são perfeitas, elas apresentam falhas, possuindo locais vagos onde, teoricamente, deveria haver um átomo.

Difusão

Em um processo chamado de difusão, os átomos dos dois elementos procuram tirar vantagem dessas lacunas, "saltando" pelo material para ocupar os espaços vagos e alterando a estrutura da liga metálica.

"É como uma dança das cadeiras. A difusão acontece em praticamente todos os materiais, e os materiais podem se degradar porque a difusão causa determinadas alterações na estrutura do material," explica do Dr. Katsuyo Thornton.

Rupturas nas ligas metálicas

O que Thornton e seus colegas demonstraram é que os átomos dos diferentes elementos "saltam" de forma muito diferente através do material devido à diferença da intensidade de suas ligações com os átomos vizinhos. Essa discrepância na taxa de movimentação dos átomos de cada elemento gera uma difusão maior ao longo das fronteiras dos cristais, levando a uma degradação acelerada do material.

"Em alguns casos, a difusão na fronteira dos grânulos é 100 vezes maior do que aquilo que comumente se espera," diz Thornton. "Esta é uma descoberta muito genérica. É por isto que ela é importante. Ela se aplica a uma grande variedade de materiais. Ela se aplica a materiais eletrônicos policristalinos, como as soldas."

Substituição das soldas com chumbo

As soldas tradicionais são feitas com ligas de chumbo, mas há um esforço internacional para a substituição desse metal pesado. Contudo, nenhum substituto tecnicamente à altura foi encontrado até agora. Um dos maiores problemas está nos chamados "bigodes de estanho," que crescem a partir dos pontos de solda e que já foram responsáveis por falhas em satélites artificiais, com enormes prejuízos.

Por isso os pesquisadores agora planejam aplicar sua teoria aos novos de materiais de soldagem, para tentar descobrir a razão do crescimento desses bigodes nas soldas sem chumbo e tentar evitá-los.

quinta-feira, 16 de outubro de 2008

Cresce tecnologia híbrida para ônibus

Sucesso na América do Norte encaminha o aumento de vendas na Europa, com a preocupação de operadores com aumento de custos com combustível e preocupação com o Meio Ambiente
INDIANAPOLIS, INDIANA, EUA — Allison Transmission, líder mundial no fornecimento de transmissões automáticas para uso comercial e de sistemas híbridos de propulsão, continua a ser uma força dominante no mercado de ônibus híbridos tanto na América do Norte, quanto na Europa.
Até agosto, mais de 1100 ônibus equipados com a tecnologia dupla paralela híbrida GM-Allison foram entregues em 94 cidades no mundo todo. Esses veículos já rodaram um total de 134.071.230 quilômetros, economizando uma quantidade estimada de 16.761.237 litros de combustível e eliminando 43.842 toneladas cúbicas de CO² da atmosfera. E mais ônibus equipados com a tecnologia híbrida GM-Allison estão saindo da linha de montagem diariamente.
“Desde que a tecnologia de propulsão híbrida foi introduzida, esses sistemas têm alcançado um enorme sucesso no mercado de ônibus, provando que nós desenvolvemos a solução certa na hora certa”, comenta William E. Klenk, Diretor de Operações Fora de Estrada e Elétricas. “Enquanto nosso sucesso inicial ocorreu na América do Norte, diversas cidades européias estão abraçando esta tecnologia, visto que a preocupação com o meio ambiente e com os constantes aumentos do preço dos combustíveis no mundo todo exigem das autoridades de trânsito que procurem sistemas alternativos”, completa.
Veículos articulados das cidades de Istambul, na Turquia, e Douai, na França, estão operando com a tecnologia dupla paralela híbrida GM-Allison, bem como ônibus na Alemanha e na Suíça. De fato, ônibus híbridos de segunda geração estão, neste momento, rodando em estradas em Bremen, Munique e Hanover, na Alemanha, apenas dois anos após o primeiro Solaris 18 GM-Allison ter feito sua estréia na Europa. Um pequeno motor diesel combinado com um sistema híbrido duplo GM-Allison garante um consumo de combustível ainda menor e maior eficiência.
“Nós encontramos um parceiro experiente e confiável para o desenvolvimento de ônibus híbridos para o mercado europeu. Com a segunda geração de ônibus híbridos Solaris, nós estamos atingindo uma economia de combustível de mais de 24%. Isto significa um quarto do caminho em direção à independência do diesel e nós estamos muito contentes de seguir nesse sentido ao lado da Allison”, diz Krzysztof Olszewski, CEO da Solaris Bus & Coach S.A.
A tecnologia híbrida é a preferida pela indústria de ônibus norte-americana, com mais de 30% dos ônibus fabricados atualmente possuindo tecnologia híbrida de propulsão. Cidade dos EUA, como Seattle, Filadélfia, Washington-DC, Albuquerque, Houston, St Paul e Hononulu continuam pedindo híbridos GM-Allison, mas em quantidades sempre crescentes.
Jim Boon, gerente do setor de manutenção de veículos da King County Metro, a entidade responsável pelo trânsito em Seattle diz que “em junho último, acrescentamos mais 22 ônibus híbridos articulados, fazendo com que chegássemos a 257 unidades em nossa frota. Os novos ônibus se integraram perfeitamente aos híbridos já existentes. Em julho, registramos cerca de 910 mil milhas com a frota híbrida. O desempenho continua excepcional com grande economia de combustível e excelente disponibilidade da frota”.
Outro caso notável está no Parque Nacional de Yosemite, também nos Estados Unidos. Lá, toda a frota de ônibus foi substituída por veículos equipados com a silenciosa tecnologia híbrida dupla GM-Allison, para uma operação em perfeita harmonia com a natureza.
O sistema híbrido GM-Allison utiliza tecnologia híbrida dupla paralela que combina um motor diesel e outro elétrico. Dependendo das condições e da velocidade do veículo, o controle do sistema seleciona a fonte de força adequada ou uma mistura de ambas.
O coração do sistema é a unidade EV Drive™, uma transmissão de com variedade praticamente infinita que permite ao sistema híbrido rodar de forma silenciosa, limpa e mais eficiente. Dependendo do ciclo de trabalho, o EP System™ provou na Europa que consegue economizar mais de 24% de combustível e reduzir de drasticamente as emissões do motor a diesel, incluindo o dióxido de carbono e materiais em partícula.
A aceleração é também notadamente mais suave, na comparação com veículos a diesel. E, com um processamento inteligente, o sistema híbrido GM-Allison apresenta a melhor performance e economia de combustível para uma ampla gama de condições de direção. Com a frenagem regenerativa permitindo ao veículo criar energia adicional que normalmente era perdida com os freios, o sistema torna-se particularmente bem preparado para as demandas de “anda-e-pára” das rotas de ônibus urbanos.
A Allison Transmission fabrica a unidade EV Drive™ e fornece o Sistema de Armazenamento de energia, a Unidade de Controle do Motor Híbrida e o Processador Eletrônico de Energia DPIM. A habilidade de entregar aos fabricante4s de veículos o sistema completo, sem forçar os clientes a procurar os componentes individualmente, garante à companhia uma integração que oferece enorme vantagem frente à concorrência.
As entidades controladoras do trânsito têm conhecimento que o sistema duplo híbrido GM-Allison é um sistema híbrido comercialmente aceito, assim como seu sistema de armazenamento de energia. Desde que a produção comercial foi iniciada em 2003, não houve sequer uma falha de bateria extinta com o sistema híbrido GM-Allison. Em 2007, mais de 400 ônibus híbridos GM-Allison foram produzidos, com 360 unidades entregues a 36 cidades. Este é o maior número desde que a produção foi iniciada.
A tecnologia híbrida dupla nestes sistemas GM-Allison está servindo como ponto inicial para o co-desenvolvimento da General Motors com a Chrysler, Mercedes e Grupo BMW para um sistema híbrido duplo em veículos de passeio.

Transmissões automáticas para ônibus movidos a gás natural


A tecnologia Allison auxilia ônibus movidos a GNV no momento da partida e durante os trajetos. Operação limpa e performance silenciosa agrada tanto aos frotistas quanto aos passageiros
INDIANAPOLIS, INDIANA, U.S.A. – Allison Transmission, a líder mundial no fornecimento de transmissões 100% automáticas e sistemas de propulsão híbrida, é também o fornecedor número 1 do planeta em transmissões automáticas para ônibus movidos a gás natural (GNV). A empresa desenvolve produtos para ônibus urbanos há mais de 60 anos, também para veículos híbridos e a diesel – atendendo uma demanda crescente no mundo todo por transporte de passageiros eficiente e de custo acessível.
Com os ônibus movidos a GNV, a liderança da Allison agora se aplica a uma fonte de combustível alternativa que, além de ser 90% mais limpa do que o diesel, é também mais barata, algo muito importante num cenário em que o preço desse combustível não pára de subir.
“Uma transmissão automática Allison é indispensável para o uso de motores movidos a GNV em ônibus utilizados em cidades”, diz Lawrence A. Love, diretor-executivo de marketing internacional da Allison. “Diferente de um motor a diesel, motores a GNV possuem outras características de operação e de resposta durante as saídas. A tecnologia conversora de torque da Allison auxilia os motores movidos a GNV durante a partida do veículo, multiplicando o torque do motor e suavemente movimentando o ônibus. Como resultado, com uma peça Allison, o veículo tem ótima performance e utiliza o combustível de forma mais eficiente - algo vital numa era de aumento dos custos de combustível”, completa.
“Além disso, a maioria dos motores a GNV não são capazes de utilizar um freio motor ou de ter a mesma capacidade de parada de motor como um diesel”, comenta Love. “Entretanto, o retardador hidráulico da transmissão automática Allison compensa esse fato, atuando como um auxiliar que amplia a capacidade geral de freio do veículo, aumentando a durabilidade dos sistemas de freio”, completa.
No início deste ano, a TATA Motors da Índia adquiriu 655 ônibus movidos a GNV e configurados com transmissões automáticas Allison, para a Delhi Transport Corporation (DTC). Tanto os motoristas, quanto os passageiros, estão extremamente satisfeitos com a suavidade e o conforto das viagens. Por outro lado, a direção da DTC mostra-se contente com custos operacionais e de manutenção, pois há menos problemas no motor e nos componentes do trem de força.
Além deste contrato conquistado na Índia, a Allison Transmission é o fornecedor número um para transmissões automáticas voltadas a ônibus convencionais e movidos a GNV na China.
Durante as Olimpíadas, ocorridas em agosto em Pequim, por exemplo, um time de especialistas Allison esteve a postos para assegurar que as 12 mil transmissões automáticas em funcionamento na cidade mantivessem uma operação perfeita. Muitas dessas em ônibus movidos a GNV. O pessoal da Allison se estabeleceu em um centro de comando, trazendo um time de suporte e peças de reposição, além de criar um sofisticado programa de logística e comunicação para apoiar toda a operação durante os Jogos Olímpicos.
Nos Estados Unidos, os benefícios ambientais das transmissões automáticas Allison combinadas com motores movidos a GNV são bastante reconhecidos. Utilizados em princípio na costa oeste, por conta das leis que restringem a emissão de gases, os ônibus a GNV com transmissões automáticas Allison estão em operação em grandes cidades como Los Angeles e San Diego, na Califórnia; e Las Vegas, em Nevada. De fato, os motores GNV são especificados quase que exclusivamente em Los Angeles. É preciso ainda ressaltar que a maioria dos fabricantes de ônibus dos EUA oferece a combinação Allison / motor GNV.
Somados aos ônibus urbanos equipados com produtos Allison e movidos a GNV na Índia, China e Estados Unidos, outras localidades ao redor do mundo também contam com essa combinação, tais como Japão, Rússia, Peru e Austrália.
“Os benefícios ambientais dos ônibus GNV em termos de baixas emissões e ar mais limpo são evidentes”, explica Manilo Álvaro, gerente de marketing da Allison para a Europa. “Assim como é também evidente que, unir esses ônibus com transmissões automáticas Allison significa partidas e trajetos suaves para os passageiros, além de maior vida útil e custos de manutenção mais baixos para os operadores de frotas”, finaliza.